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5. Tissue optics, parameters, describing light distribution in tissue
5. Optika lidské tkáně, parametry, popis rozptylu fotonů v tkáni

Applied Optoelectronics 
in Medicine

Aplikovaná optoelektronika v lékařství

Interdisciplinary course at the CTU Prague (P317APL-E, W, 4 credits)

© V. Blazek, MedIT, 2016
All rights reserved
Lecture 5, Page 2

Scriptum AOM: Applied Optoelectronics in Medicine

Learning aims of the fifth AOM lecture

• Strategies for assessment of photon penetration through the tissue

• Radiative transfer theory

• Kubelka-Munk theory

• Monte Carlo method, typical simulation results

• Optical model of the skin
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Simplified section through the human skin 
with a schematic representation of the reflected, transmitted, absorbed and 
scattered radiation components 
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Terms and parameters of tissue optics - continuation

For the optical characterisation of the skin and other biological probes mainly the parameter
reflection, transmission und extinction are used:
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Under the assumption of linear extinction
the law of Lambert is valid:
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Spectral extinction, absorption and scattering coefficient:
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Phase function of the scattering process, anisotropy factor
The Henyey-Greenstein phase function has been proven in the description of scattering 
processes in biological samples, with scattering centers in the order of one or more wavelengths
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Spectro-photometric determination of scattering and absorption properties 
The optical constant µa and µs cannot be determined directly by measurement. Therefore, we 
determine first the parameters R(λ) and T (λ)  by spectrophotometry with a "double integrating 
sphere" sensor. Parallel we guess the optical coefficients and calculate the expected values R and 
T. Then we have to compare these values with the measured variables; to prove the calculated 
values. 
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Determination of the scattering angle / of the scattering function 
with a goniometer measuring setup

Example 1:
Typical optical
properties of
superficial skin
layers
(at  = 850 nm)

A goniometer is an instrument that either measures an
angle or allows an object to be rotated to a precise
angular position. The term goniometry is derived from
two Greek words, gōnia, meaning angle, and metron,
meaning measure.



5

© V. Blazek, MedIT, 2016
All rights reserved
Lecture 5, Page 9

Scriptum AOM: Applied Optoelectronics in Medicine

Example 2: 
Optical properties of brain tissue (white substance)
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Example 3:
Optical properties of human skin in vivo (Type II according Filzpatrick)

a) Absorption coefficient, b) scattering coeggicient, c) anisotropy factor, d) photon penetration depth 
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Calculation methods of light propagation in biological tissue

• Application of Maxwell's equations 
• Radiative transfer theory 
• Kubelka-Munk theory 
• Monte Carlo simulation method 

Analytical method / application of Maxwell's equations
Very comprehensive approach for determining the photon flux in a medium. Definition of
material properties, geometry, boundary conditions and the excitation gives us a boundary
value problem, which solutions leads to a determination of fields in the medium. From the field
distribution we can theoretically calculate the transport of energy and thus the photon flux.

Radiative transfer theory (RTT)
Describes the energy balance, or the spatial changes of the irradiance L for an infinitesimal
area at the point r respectively.
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The radiance density is attenuated by scattering and absorption; but at the same time, it is
increased by light scattered back to the original direction s or regenerated in the medium (e.g.
fluorescence):
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Kubelka-Munk theory *

An approximate method for describing the optical flow in scattering media by a 
"Two-flow model". 

It considers the forward (I) and reverse scattering (J) only, with the aim to determine the scattering ratio 
absorption/scattering (K / S). 

* Kubelka, P., Munk. F.: Ein Beitrag zur Optik der Farbanstriche.  Z. techn. Phys. 11a (1931), 593

The flow I, in the direction x, in distance x
opposite to the illuminated side (x=0), in a
differential layer of thickness dx, is
attenuated by backscattering (coefficient
S) and absorption (coefficient K):
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The same happens to flux J in the opposite 
direction: 
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A general solution of the differential equation for the reflection coefficient r (x) at any location :   dx 0
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x = d gives the ratio R of the direct to the reflected flux at the surface of the sample, the Reflection coefficient.
For r g = 0 and d -> is:
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It gives the basic differential equations: 
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Remember:

From a single measurement of the reflection coefficient at infinitely large probe thickness the
absorption/scattering ratio can be approximately calculated using the Kubelka-Munk method

Kubelka-Munk theory - typical results
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Simulation of photon propagation in scattering media 
by means of Monte Carlo method 
The name Monte Carlo method was given by Metropolis and Ulam in 1949. They studied Simulation of diffusion 
processes in radioactive material. 

Nicholas METROPOLIS
(1915 – 1999)

Stanislaw ULAM
(1909 – 1986)
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Why Monte Carlo ...? 
Metropolis and Ulam were inspired by the first tables of random numbers based on the results 
from the Casino of Monte Carlo 

Kaiser KARL IV. (1316 - 1379)

* HENGARTNER, W.: THEODORESCU, R.: Einführung in die Monte-Carlo-Methode. Hanser Verlag, München 1978
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Simulation of photon propagation in scattering media 
by means of Monte Carlo method

The Monte Carlo simulation can simulate uncertainties and statistical behavior such as:
If you do not know how rain falls, than simulate the path of a drop with randomly distributed other
drops and collisions. After the simulation of several drops it gives you a statement about the average
droplet size and dependent on temperature and density of droplets about possible snow or hail.

Important for realistic simulation results: 

• good random number generator; 
• high number of simulated events  (here large number of photons N); 
• valid for estimating the error of the simulation: 

Nerr /1

MC simulation is a stochastic method, based very often on coincidence experiments.
With the help of probability theory, it attempts, in mathematical context, to solve analytically intractable 
problems numerically, based on these coincidence results. Justification is mainly the law of large 
numbers. 
The coincidence experiments can be either performed in reality, such throwing dice (cube), or through 
the generation of random numbers. 
Nowadays, computers generate random processes in almost any large scale.
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Program structure for Monte Carlo 
simulation of photon propagation in 

tissue
(s = 15/cm, g = 0.9)

(Mühl, PhD thesis, RWTH Aachen Univ., 1988)

Typical Photon trajectory 
in a homogeneous scattering 

sample 
two dimensional projection (a = 0.5/cm)

(Wang et al., 1992)
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Monte Carlo simulation of photon trajectory in highly scattering tissue: 
1) Modeling of the photon generation 

Starting point of the photon injection:
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… Uniformly distributed random number in the interval (0,1) 

Probability of the photon flux in a given direction by their distribution density function: 

R
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Scattering and absorption probability in homogeneous
medium are constant.
This results in an exponentially decaying probability
density function of the free path length s between two
successive photon collisions in the tissue:
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By integration we obtain the distribution 
Function of the mean free path s: 

Determination of an exponentially distributed 
path-length: 

Monte Carlo simulation of photon trajectory in highly scattering tissue: 
2) Modeling of photon scattering and absorption 
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The starting point is the Henyey-Greenstein phase function 
Integrating over the polar scattering angle gives the distribution function of different anisotropy factor g: 
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Monte Carlo simulation of photon trajectory in highly scattering tissue: 
3) Modeling of the flight direction after scattering 
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Monte Carlo simulation of photon trajectory in highly scattering tissue: 
4) Free flight path between two collisions for various scattering 

coefficients 

Total probability of scattering at the point 
s = nds: 
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Expansion of the distribution function for layered media 

Remember: Random variables of the process (used to determine the solution of the 
process)  are simulated by generation of random numbers with corresponding
distribution functions.

Monte Carlo simulation of photon trajectory in highly scattering tissue: 
4) Free flight path between two collisions for various scattering 

coefficients 
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Shadow projection (y = 0) of the detected photon trajectories (1516 from 3.10 6) 
z = 6 mm, d = 60°

Longest trajectory 20mm.  CPU time: 11.5 h

Light distribution in biotissue: 
typical Monte Carlo simulation results
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Light distribution in biotissue: 
typical Monte Carlo simulation results

Homogeneous skin model                                    Skin model with a singular, strongly absorbing
structure 
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Monte Carlo simulation of photon paths in highly scattering tissue 
Homogeneous scenario, typical results

Reflection sensor
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Transmission sensor

Monte Carlo simulation of photon paths in highly scattering tissue 
Homogeneous scenario, typical results
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The simulation domain is running toward the light source. The animation illustrates the spatial 
distribution. A temporal resolution of the photon motion is not carried out. 

Monte Carlo simulation of photon paths in highly scattering tissue 
Homogeneous scenario, typical results
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The simulation domain is running transversally to  the light source. The animation illustrates the 
spatial distribution. A temporal resolution of the photon motion is not carried out. 

Monte Carlo simulation of photon paths in highly scattering tissue 
Homogeneous scenario, typical results
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Einstrahlung
von 103 Photonen

Einstrahlung
von 105 Photonen

Einstrahlung
von 107 Photonen

Monte Carlo simulation of photon paths in highly scattering tissue
Different numbers of simulated 

photon paths
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Temporal selective 
Monte Carlo 
simulation 

A) Time of photon flight:   9 - 13 ps
B) Time of photon flight: 18 - 22 ps
C) Time of photon flight: 32 - 36 ps
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Temporal selective Monte Carlo simulation 
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Simulation parameters:
Scattering coefficient: s = 1.0/mm
Absorption coefficient: a = 0.1/mm
Anisotropy factor: g = 0,9
Refractive index: n = 1.33
Photon number:            100.000 per image
Image section:                          10x10 mm2

Gradually:                        1mm photon way

Inhomogeneity with increased scattering 
coefficient and refractive index

Temporal selective Monte Carlo simulation 
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Monte Carlo simulation of light distribution in a 6-layer skin 
phantom
With this differentiated skin model that takes into account local blood volume fluctuations and
consider realistic geometry assumptions of skin structures and variable absorption and
scattering coefficients. It is possible, among others, to conduct optimization of the skin
attached optoelectronic sensors for hemodynamic studies.

Model of skin / vessel phantom:
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Monte Carlo simulation of light distribution in a 6-layer skin phantom
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How is a tissue phantom to define and generate?
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Related publication, recommended for further study:
D.J. Smithies and P.H. Butler

Modelling the distribution of laser light in port-wine stains with 
the Monte Carlo method
Phys. Med. Biol. 40,5 (1995), pp. 701-731
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„Education is what is remaining,
when we forgot everything,

what we learned in the school“

Albert EINSTEIN (1879 - 1955)
Creator of the description as „light quant“
Nobel price 1921

Citát pro pátou přednášku / Quotation of the lecture 5:


